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Figure 1: What are they doing? While just the action is observable (heating the bottle), we still predict the goal behind the
action (to open the bottle). In this paper, we learn from failure examples to learn representations of goals in video.

Abstract

We introduce a framework that predicts the goals behind
observable human action in video. Motivated by evidence
in developmental psychology, we leverage video of uninten-
tional action to learn video representations of goals without
direct supervision. Our approach models videos as contex-
tual trajectories that represent both low-level motion and
high-level action features. Experiments and visualizations
show our trained model is able to predict the underlying
goals in video of unintentional action. We also propose a
method to “automatically correct” unintentional action by
leveraging gradient signals of our model to adjust latent
trajectories. Although the model is trained with minimal
supervision, it is competitive with or outperforms baselines
trained on large (supervised) datasets of successfully exe-
cuted goals, showing that observing unintentional action is
crucial to learning about goals in video.

1. Introduction
Goal-directed action is all around us. Even though Fig-

ure 1 shows a person performing an unconventional action
(heating a wine bottle with a blowtorch), we cannot help but
to perceive the action as rational in the context of the goal
(to open the bottle).

Predicting the goal of action may seem challenging be-
cause future goals are not directly observable in video.

However, in a series of papers, development psychologists
Amanda Woodward and Michael Tomasello demonstrated
that children reason about goals before their second birth-
day [46, 54], and this reasoning plays a key role in rapid
development of communicative skills [47] and mental rep-
resentations of the world [2]. Despite the relative ease of
this task for children, machine recognition of goals has re-
mained challenging.

The hypothesis underlying this paper is that examples
of failure are key missing pieces in action recognition sys-
tems. Without observing unintentional action, we cannot ex-
pect models to discriminate goals from actions. Examples
demonstrating unintentional action are necessary to decou-
ple these two notions, separating between the visible action
and the latent goals. As Efros has been telling us all along,
it is all about the data [19], and negative data doubly so [57].

The main observation behind our approach is that natu-
ral video will contain abundant and rich examples of both
intentional and unintentional action [8], which we can lever-
age for learning. In our model, video is represented as a
trajectory, and goals are encoded as the path for the trajec-
tory. Given examples of videos with variable success, we
present a model that learns goal-oriented video representa-
tions by discriminating between success and failure. Our
model captures both motion and relational features through
an attention-based transformer architecture, allowing end-
to-end training.

Our experiments show that failure data is crucial for
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Figure 2: Learning goal-oriented video rep-
resentations: We show an overall view of our
approach. First, we embed short clips using a
3D CNN to represent short-term motion features.
Then, we run the sequence of CNN embeddings
through a stack of Transformers, where they in-
teract with each other to finally form a context-
adjusted latent action trajectory. The model is
trained end-to-end from scratch, with intentional-
ity and temporal coherence losses (depicted top-
left). Points along the resultant trajectory are de-
coded with linear projections into various spaces
(top-middle).

learning representations of goals. We evaluate our model
on three goal prediction tasks. First, we experiment on de-
tecting unintentional action in video, and we demonstrate
strong performance over baselines on this task. Second, we
evaluate the representation at predicting goals with minimal
supervision, which we characterize as structured categories
consisting of subject, action, and object triplets. Lastly,
we use our representation to automatically “correct” unin-
tentional action and decode these corrections by retrieving
from other videos or generating categorical descriptions.

Our main contribution is an approach that, training on
data of unintentional action, learns a goal-directed represen-
tation of videos. We show that our model often captures
the latent goals behind observed action, performing on par
with or better than supervised models trained on large la-
beled datasets of only intentional action. We also introduce
a method to find minimal adjustments to the path and “au-
tomatically correct” unintentional action in video. The re-
mainder of this paper will describe this approach in detail.
Code, data, and models will be available.

2. Related Work
Recognizing action in video: Previous work explores

many different approaches to recognizing action in video.
Earlier directions develop hand-designed features to pro-
cess spatio-temporal information for action recognition [29,
27, 51, 39]. Popular deep learning architectures for im-
ages were extended to operate directly on video by mod-
eling time as a third dimension [17, 4, 44, 31, 24]. To deal
with variable-length or long video input, previous work fre-
quently takes one of two approaches: pooling or recurrent
networks. However, pooling loses spatial and/or temporal

connections between different moments of video. Since re-
current networks are sequential, they require selecting im-
portant video features ahead of time, without viewing full
context. RNNs are also known to struggle to connect be-
tween far-apart inputs, which creates significant challenges
in modeling long-term video. [45] is most similar to our
approach, since they also run clips through 3D CNNs and
Transformers, but they freeze 3D CNNs and train on a
“masked video modeling" task, ultimately discarding con-
textually learned temporal dynamics across videos since
their goal is to learn information useful for an effective
cross-modal representation. To address these drawbacks,
we propose a 3D-CNN-Transformer model which allows for
short-term, granular motion detection combined with a long-
term action representation, trained end-to-end from scratch.

Learning about intention: Evidence in developmental
psychology quantifies why humans perceive intention [2],
how we perceive it [56, 55, 54], when we begin to do so
[32, 33], and what allows us to infer the goals behind oth-
ers’ behavior [42]. Early work in computer vision has inves-
tigated assessing the quality of action execution [40, 7, 38],
which our work builds upon. However, we view quality
from a goal-directed perspective and automatically correct
unintentional action with minimal supervision. We take
advantage of signals in unconstrained video collections of
both intentional and unintentional action [8] to learn about
goals from video.

Leveraging adversarial attacks: We use adversarial
gradients [12, 28] to find adjustments to learned video rep-
resentations which “auto-correct” unintentional action back
onto the manifold of intentional action. Previous work stud-
ied adversarial attacks in steganography [18, 61], software
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Figure 3: Labeling goals and failures in video: To evalu-
ate our representation, we annotate the Oops! dataset with
short sentences describing the goals and failures. We extract
subject-verb-object triples and train a decoder on learned
representations. The intentional and unintentional action in
the dataset span a diverse range of categories.

bug-finding [41], generating CAPTCHAs [50] to fool mod-
ern deep nets [37], generating interesting images [43], creat-
ing real-world 3D objects that trick neural networks [60, 1],
and in training models more robust to test-time adversarial
attacks [36, 12, 35]. [22] extend this concept to generative
models, setting a new image output as a target label and per-
turbing latent space. In video, [26, 53] introduce various
methods to fool action recognition networks, often on a 3D
CNN backbone. We instead utilize adversarial attacks to
manipulate and correct unintentional action.

3. Unintentional Action and Goals Dataset
Similar to how children learn about goals by perceiving

failed attempts at executing them [33], we hypothesize that
examples of failure are crucial for learning to discriminate
between action and goal. Without observing unintentional
action, models can not learn the pattern discriminating ac-
tion and intention. We build on the Oops! dataset [8], which
is a large collection of videos containing intentional and un-
intentional action, to train and evaluate our models. Videos
in this dataset are annotated with the moment at which ac-
tion becomes unintentional. Figure 3 shows some example
frames. We also use the Kinetics dataset [3] to evaluate
models, since it contains a wide range of successful actions.

We would like to learn a representation of goals that only
requires visual information to train. However, evaluating
trained models and probing them for an understanding of

goals requires gathering labels of goals. Therefore, we ex-
pand [8] with textual descriptions of goals and failures in the
dataset, and use these annotations to evaluate our (trained,
frozen) model in comparison to other representations.

3.1. Goal and Failure Annotation

Established action datasets in computer vision [13, 30]
contain annotations about person and object relationships
in scenes, but they do not directly annotate the goal, which
we need for evaluation of goal prediction. We collect uncon-
strained natural language descriptions of a subset of videos
in the Oops! dataset (4675 training videos and 3404 test
videos), prompting Amazon Mechanical Turk workers1 to
answer “What was the goal in this video?” as well as “What
went wrong?”. We then process these sentences2 to detect
lemmatized subject-verb-object triples, manually correcting
for common constructions such as “tries to X” (where the
verb lemma is detected as “try”, but we would like “X”).
The final vocabulary contains 3615 tokens. Figure 3 shows
some example annotations. Detailed statistics for processed
SVO triples are provided in the Supplementary Material.
We use SVO triples to evaluate the video representations.

4. Method
In this section, we introduce our framework to learn goal-

oriented trajectory representations of video. Our method ac-
cepts as input sequences of video input depicting intentional
and/or unintentional action, and learns to represent these se-
quences as latent trajectories, from which intentionality of
action is predicted. We show in Section 5 that, having ob-
served unsuccessful action as well as successful, our trained
model learns trajectories which capture the goals latent in
the input video.

4.1. Visual Dynamics as Trajectories

A common approach to representing video data is to
run each clip through a convolutional network and com-
bine clip representations by pooling to run models on en-
tire sequences [9, 14, 11, 59]. However, these methods
do not allow for connections between different moments
in video and cannot richly capture temporal relationships,
which give rise to goal-directed action. While recurrent net-
works [20] are more expressive, they require compressing
history into a fixed-length vector, which forces models to
select relevant visual features without viewing full context
and makes reasoning about connections between different
moments difficult, especially when they are far apart.

Temporal streams of visual input are highly contextual
with both short- and long-term dependencies. We will rep-
resent video as a contextually-adjusted trajectory of latent

1with > 10k approvals at a ≥ 99% rate
2Using the Spacy.io natural language library
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representations in a learned space. Figure 2 illustrates this
architecture, which has both a motion and action level:

Motion Level: First, we separate video into short clips
(or tokens) in order to make initial motion-level observa-
tions. Let x be a video, and xi be a video clip centered at
time i. We estimate the motion-level features ϕi = f(xi)
where f is a 3D CNN [25].

Action Level: Second, we model relations between ϕi

to construct a contextual trajectory hi = g(ϕi) where g
is the Transformer [49]. The Transformer accepts as in-
put a sequence of motion-level representations {ϕi}ni=1, re-
peatedly performs self-attention among them, in the same
spirit as the forward pass of a graph neural network, with
video clips as nodes [58]. The output of the Transformer is
a final latent path {hi}ni=1. Since the self-attention opera-
tion can incorporate contributions from both nearby and far
away moments in its representations for each clip, the Trans-
former is well-suited to modeling higher-level connections
between the atomic actions recognized at the motion level.
The Transformer’s output {hi}ni=1 can then be applied in
different downstream tasks.

4.2. Learning with Indirect Supervision

We learn the representation with weak, indirect supervi-
sion that is accessible at large scales. This supervision is
also truer to how humans learn about intention, since we do
not require labeled action semantics, but do often receive en-
vironmental cues about whether others’ action is intentional
or not [5]. We use the following two objectives for learning:

Action Intentionality: We train the model to temporally
localize when action is unintentional. We assume that the
video frame where the action shifts from intentional to un-
intentional is labeled [8], and note that these labels are a
significantly weaker form of supervision than semantic ac-
tion categories. For each video clip xi, we set the target
yfail
i ∈ {0, 1, 2} according to whether the labeled frame hap-

pens before, during, or after the clip xi. The model esti-
mates ŷfail

i = softmax(wT
1 hi) with a linear projection where

w1 is a jointly learned projection matrix to R3. We train
with a cross-entropy loss between ŷfail and yfail where the
class weight is set to the inverse frequency of the class label
to balance training. We label this loss Lfail.

Temporal Consistency: We also train the model to learn
temporal dynamics with a self-supervised consistency loss
[14, 34, 10, 52, 23, 6]. Let ynsp = 1 indicate that the se-
quence is consistent. We predict whether the input sequence
is temporally consistent with ŷnsp = σ(wT

2 h0) where w2 is
a jointly learned projection to R. We train with the binary
cross-entropy loss between ynsp and ŷnsp. We label this loss
Lnsp (next sequence prediction). This loss encourages the
model to learn longer-term patterns in human action.

We create inconsistent sequences as follows: For each
video sequence in the batch, we bisect the sequence into

two parts at a random index with probability psplit = 0.5.
For these sequences, we perturb the video segments with
probability pperturb = 0.5. When perturbing, we swap the
order of the two sequences with probability pswap = 0.3,
otherwise we pick a randomly sized subsequence from an-
other video sequence in the batch to replace one of the two
segments.

A large line of recent and concurrent work has tack-
led the problem of self-supervised representation learning
in video (e.g. [14, 15, 16, 34, 10]). Our paper focuses
on the value of training on data of unintentional action to
learn goals, and we use the self-supervised temporal consis-
tency loss to encourage our model to reason about longer
sequences of action, especially useful for the automatic cor-
rection of unintentional action demonstrated in Section 5.4.
Other self-supervised losses could be incorporated into our
framework to serve the same purpose.

Training: To train our model, we set the overall loss as
L = Lfail + λLnsp, where λ is a hyperparameter controlling
the importance of the coherence loss. We set λ = 0.5 to
balance the magnitudes of the losses.

5. Experiments

5.1. Experimental Setup

Baselines: We evaluate the 3D CNN from [8] which is
trained from scratch on the action intentionality loss (Sec-
tion 4.2). We also evaluate a 3D CNN pre-trained on Ki-
netics action recognition, which is frozen unless indicated
otherwise. The 3D CNN trained on Kinetics is the current
state of the art in video representation learning when trans-
ferred to many downstream tasks, and represents a high-
water mark for performance when training only on inten-
tional action. Further, to fairly compare the Transformer
layer to 3D CNNs which take in one short clip only, we
pool 3D CNN predictions locally with neighboring predic-
tions such that both methods have the same effective tempo-
ral receptive field.

We evaluate our learned representations by freezing
them and then decoding them via retrieval as well as goal
and failure prediction.

Retrieval: We perform nearest-neighbor retrieval
among one-second long clips in the test sets for the Oops!
and Kinetics datasets. While we do not learn a represen-
tation using Kinetics data, we include a subset of Kinetics
(of the same size as the Oops! validation set) in retrieval,
to see if auto-corrected actions match with successfully exe-
cuted goals in Kinetics rather than failed attempts (see Sec-
tion 5.4). This decoder maintains a lookup table of all clip
representations and computes the k-nearest neighbors from
different videos using cosine distance.

Categorization: We also implement a decoder using the
textual labels we gathered on the videos. Here, the task is to
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Localization Classification
Method 01 sec 0.25 sec Accuracy

Kinetics [4] finetune 75.9 46.7 64.0
Kinetics frozen + linear 69.2 37.8 53.6
3D CNN only [8] 68.7 39.8 59.4
Our model 72.4 39.9 77.9

Chance 25.9 6.8 33.3

Table 1: Detecting unintentional action: We evaluate mod-
els on classifying and localizing unintentional action on the
Oops! Our model is competitive with Kinetics supervised
features on unintentional action localization despite training
from scratch, outperforming it on three-way classification.
Since our model learns how to relate between different mo-
ments in time, instead of naively pooling, it is able to make
better use of temporal context to solve these tasks.

describe the goals of the input video using the SVO triplets.
We train a decoder to predict the main goal for clips with
intentional action (before the onset of failure), and predict
what went wrong for clips with unintentional action, using
labels gathered as described in Section 3.1. The estimated
decoder will describe intentional action in video with de-
scriptions of the goal, for example “athlete wins game” and
not “throwing ball", which is an action. Unintentional ac-
tion, in turn, will be described as “man spills groceries” in-
stead of a generic action category such as “walking”. We
train a linear layer to output a vector for subject, verb, and
object. As ground truth, we use BERT word embeddings
[6], calculating scores using dot product and running them
through softmax and a cross-entropy loss.

5.2. Unintentional Action Detection

We evaluate the model at detection and temporal localiza-
tion when action deviates from its goal. We use labels from
the test set in [8] as the ground truth. We process videos
with our model, sampling continuous one-second clips as
tokens, and take the predicted localization as the center of
the clip with maximum probability of failure. We also clas-
sify each clip according to its label (intentional, transitional,
or unintentional). We show results in Table 1. On the for-
mer task, our model is competitive with fine-tuning a fully-
supervised Kinetics CNN, despite using less data and less
supervision. On classification, our network outperforms the
Kinetics network by 14%, showing that representing videos
as contextual trajectories is effective.

5.3. Goal Prediction

We next evaluate the model at predicting goal descrip-
tions. We train a decoder on the trajectory to read out sub-
ject, verb, object triplets. In this task, ground truth is the
labeled goal if action is intentional, and the labeled failure

Subject Verb Object Average All three
Features R1 R5 R1 R5 R1 R5 R1 R5 R1 R5

Kinetics [4] 26.8 72.3 27.3 52.7 36.0 64.6 30.0 63.2 2.1 16.5
3D CNN [8] 29.4 72.7 26.4 50.4 44.7 57.9 33.5 60.3 2.9 13.9
Random 23.7 55.7 22.7 45.4 44.8 52.7 30.4 51.3 1.4 8.7

Our Model 34.3 74.5 29.7 54.2 45.0 58.2 36.3 62.3 3.3 14.4

Chance 0.1 <0.1

Table 2: Comparison of Representations: To evaluate
how well representations encode goals, we freeze them and
estimate a linear projection to predict labelled subject-verb-
object triples in the Oops! validation set. We evaluate top-1
and top-5 recall (R1, R5). By observing sequences of both
intentional and unintentional action, our model performs
competitively with others trained on large labeled datasets
of successful action.

if action is unintentional. In training, if sentences have more
than one extracted SVO, we randomly select one as ground
truth. In testing, we average-pool predictions among all
clips with intentional action and unintentional action sepa-
rately and take the maximum over all sentence SVOs. Each
video clip has two pooled predictions: one for video show-
ing intentional action (where ground truth is the labeled goal
of the video), and one for video showing unintentional ac-
tion (where ground truth is the labeled failure). Table 2
shows our model obtains better top-1 accuracy on all met-
rics than baselines, including the Kinetics-pretrained model,
and is competitive on top-5 accuracy, highlighting the im-
portance of observing failure for understanding goals.

5.4. Completing Goals by Auto-Correcting Trajec-
tories

We would like to use our learned representation in or-
der to infer the goals of people in scenes of unintentional
action. However, since the model is trained with indirect
supervision, the trajectories h are not supervised with goal
states. We propose to formulate goal completion as a latent
trajectory prediction problem. Given an observed trajectory
of unintentional action h, we seek to find a new, minimally
modified trajectory h′ that is classified as intentional. By
analogy to how word processors auto-correct a sentence, we
call this process action auto-correct. We illustrate this pro-
cess in Figure 4.

We find this correction in feature space, not pixel space,
to yield interpretable results. We find a gradient to the fea-
tures ϕ that switches the prediction ŷfail

i to be the “inten-
tional” category for all clips i.

We formulate an optimization problem with two soft con-
straints. Firstly, we want to increase the classification score
of intentional action Lfail. Secondly, we want the resulting
trajectory to be temporally consistent Lnsp. Without this
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Figure 4: Automatically correcting unintentional action: Starting from an initial trajectory, we use model gradients as a
signal to correct the course of points representing unintentional action (Section 5.4). We evaluate corrected trajectories by
decoding them into SVO triples and retrieving nearest neighbors from a databank.

Figure 5: Retrievals from Auto-corrected Trajectories: We show the nearest neighbors from auto-corrected action tra-
jectories, using our proposed method and a linearization baseline. The retrievals are computed across both the Oops! and
Kinetics datasets, since Kinetics contains many examples of goals being successfully executed, whereas Oops! focuses on
unintentional action. The corrected representations yield corrected trajectories that are often embedded close to the goal.

term, the corrected trajectory is not required to be coherent
with the initial part of the original trajectory. We minimize
this modified cost function with respect to ϕ′

t:T :

J = max
(
0,Lnsp

y=1(ϕ
′)− Lnsp

y=1(ϕ)
)
+ λ

∑
i

Lfail
y=0(ϕ

′
i)

where Ls are the original loss functions but with target la-
bels yfail overridden to be the intentional class, and λ = 2 is
a scalar to balance the two terms. We only modify ϕ on the
clips which the model classifies as unintentional in the first
place, which we denote ϕ′

t:T . The coherence loss is also
truncated by its original value, causing the optimization to
favor a trajectory that is no less temporally coherent than
the original one.

To solve this optimization problem, we use the iterative
target class method [28], which repeatedly runs the input
through the model and modifies it in the direction of the de-
sired loss. For every ϕi corresponding to a clip where action
is unintentional, we repeat a gradient attack step towards the

target yfail
i = 0. The complete update is:3

ϕk+1
t:T = clip

[
ϕk
t:T − α sign (∇ϕt:T

J) , ϕt:T ± ϵ
]

(1)

where ϕ0
t:T = ϕt:T . We repeat this process until the net-

work is “fooled” into classifying the input as intentional ac-
tion, for at most kmax iterations or until argmax ŷfail

i = 0.
Once the halting condition is satisfied, we run the modified
ϕ′ vectors through the model, yielding a trajectory of cor-
rected action h′ that encodes successful completion of the
goal. In other words, goals are the adversarial examples
[12] of failed action – instead of viewing adversarial exam-
ples as a bug, we view them as a feature [21].

As a comparison, we implement a simple baseline where
we linearly extrapolate the trajectory of observed intentional
action: if the unintentional action in a sequence of clips
{xi}ni=0 begins at clip j, we extend the trajectory for a clip
xk ∈ {xj , . . . , xn} by setting hk = hj +(k− j)

hj−h0

j . We
find this baseline to outperform other naive ones such as the
identity function (i.e. leaving the representation untouched)

3We found kmax = 25, α = 0.03, ϵ = 1 to be reasonable values.
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Figure 6: Decoding the Trajectories: We run our trained subject-verb-object decoder on different segments of Oops! videos.
Row 1 shows clips of intentional action, and the trained decoder predicts the latent goal. Row 2 shows unintentional action,
and the trained decoder now predicts failures instead. The final row also shows unintentional videos, but we run our auto-
correction algorithm before predicting SVOs. The trained decoder returns to predicting goals, suggesting the auto-correct
procedure shifts the failed trajectories towards successful ones.

and using the representation of the last moment before un-
intentional action.

Figure 5 shows examples of nearest neighbor retrievals
of the corrected latent vectors, computing over the Oops!
and Kinetics test sets. Despite not training on Kinetics (i.e.
on videos with completed goals), our representation can ad-
just video trajectories such that their nearest neighbors are
goals being successfully executed. We also examine the ef-
fects of auto-correction on the frozen SVO decoder. Table
3 shows these results. For decoders trained on all models,
rankings of intentional action SVOs increase while those
of unintentional SVOs decrease. However, the changes are
greatest for our model. Figure 6 visualizes the output of a
frozen SVO decoder on auto-corrected actions, demonstrat-
ing the auto-correct process’ ability to encode completed
goals in its output trajectories.

5.5. Analysis of Learned Representation

We finally probe the model’s learned representation to
analyze how trajectories are encoded. We measure Spear-
man’s rho correlation between the activation of neurons in
the output vectors h ∈ R512 and words in the SVO vocab-
ulary. Each video is an observation containing neuron ac-
tivations and an indicator variable for whether each word
is present in ground truth. Many neurons have significant
correlation, and we show the top 3 in Figure 7a, along with

Intentional SVO Unintentional SVO
Method Features ∆ R5 ∆ Rank ∆ R5 ∆ Rank

Adversarial Ours +1.6 +15.8M -3.3 -9.3M
Kinetics [4] +0.4 +0.3M -0.3 -1.2M
3D CNN [8] +0.3 +0.1M -0.3 -0.6M

Linearized Ours +0.6 +1.0M -0.5 -1.7M

Table 3: Evaluating Autocorrection: We freeze the trained
SVO decoder and run it on trajectories of unintentional ac-
tion, before and after auto-correction. We run our algorithm
based on adversarial attacks in various feature spaces as
well as a linearization baseline. Using our algorithm, the
frozen decoder more often predicts the ground truth goal
SVO instead of the failure, indicating that our representa-
tion – crucially trained on unintentional and intentional ac-
tion – captures the goals latent to video.

the 5 clips that activate them most. These neurons appear to
discover common intentions in the Oops! dataset, despite
being trained without any labels other than the moment of
onset of unintentional action. Note that the neurons are of-
ten invariant to action class and capture shared underlying
intention. We also visualize trajectories of some videos us-
ing t-SNE (Figure 7b), before and after autocorrect. Our
model often adjusts trajectories from unintentional action to
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(a) Top neuron-SVO correlations (b) Trajectories in t-SNE

Figure 7: Analyzing the Representation: We probe the learned trajectories. (a) shows the neurons with highest correlation
to the words in the SVO vocabulary, along with their top-5 retrieved clips. Neurons that detect intentions across a wide range
of action and scene appear to emerge, despite only training with binary labels on the intentionality of action. (b) We show six
randomly sampled video trajectories in t-SNE space, before and after auto-correct, superimposed over the embeddings for
intentional and unintentional action. Visualizations suggest our approach tends to adjust unintentional action in the direction
of successful, intentional action.

the region of embedding space with Kinetics videos, shown
in the figure as “at goal" action.

We evaluate our model’s ability to classify action inten-
tionality, predict goals, and automatically correct uninten-
tional action. We train from scratch using the Oops! dataset
[8] as described above.

6. Implementation Details
To train our model, we randomly sample sequences of

clips {xi}ni=1, where each clip xi consists of k = 16 frames
at r = 16 fps. In training, the length of these sequences
n is randomly drawn between [nlo, nhi] = [6, 10], so the
model trains on video segments up to 10 seconds long (due
to GPU memory limitations). Each clip is input to a 3D
CNN fcnn (we use the R2+1D-18 architecture [48]) which
gives a video token embedding ϕi = fcnn(xi) ∈ Rd, where
d = 512 is the hidden representation dimension. This is
analogous to the word token embedding common in lan-
guage modeling (e.g. [6]), where we separately learn em-
beddings for special tokens used to delimit input sequences.

In addition to video and special token embeddings, an ad-
ditional function embeds each token’s position in the input
sequence, since the Transformer’s attention-based computa-
tions do not otherwise encode input positions. This embed-
ding is fixed to a combination of trigonometric functions as
in [49], and is added to the CNN output. This allows the
network to learn to generalize to unseen sequence lengths

at test time, crucial to allow inference on very long videos
(which would not fit in the GPU during training due to com-
putational graph overhead). Input token embeddings are
then fed to a 4-layer Transformer network with 8 attention
heads per layer. For more details, please see Supplementary
Material.

At test time, we feed entire videos through our model,
sampled in continuous one-second intervals. If running
auto-correct, we automatically split the model into two se-
quences at the clip where unintentional action is predicted
to begin. Otherwise, we keep the entire video intact and
represent it as a full trajectory.

7. Conclusion

We introduce an approach to learn about goals in video.
By encoding action as a trajectory, we are able to perform
several different tasks, such as decoding to categorical de-
scriptions or manipulating the trajectory. Our experiments
show that learning from failure examples, not just success-
ful action, is crucial for learning rich visual representations
of goals.
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